LAWS OF LARGE NUMBERS

Dr. Lishamol Tomy Associate Professor Department of Statistics Deva Matha College Kuravilangad

LAWS OF LARGE NUMBERS

- In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times
- According to the law
- the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed
- The LLN is important because it guarantees that even random events with a large number of trials may return stable long-term results

LAWS OF LARGE NUMBERS

Three important LLNs are discussed:

- Tchebycheff's Inequality
- Bernoulli's Law of Large Numbers
- Weak Law of Large Numbers (WLLN)

TCHEBYCHEFF'S INEQUALITY

(CHEBYCHEV'S INEQUALITY)

Let X be a R.V. with mean μ and S.D. σ, then for any positive number ' t ',

$$
\begin{gathered}
\mathrm{P}[|\mathrm{X}-\mu| \geq \mathrm{t} \sigma] \leq \frac{1}{t^{2}} \\
\mathrm{OR} \\
\mathrm{P}[|\mathrm{X}-\mu|<\mathrm{t} \sigma] \geq 1-\frac{1}{t^{2}}
\end{gathered}
$$

TCHEBYCHEFF'S INEQUALITY

Proof: Let X be a continuous R.V.

- with p.d.f. $f(x)$, mean μ and S.D. σ
- then, $\operatorname{Var}(X)=E[X-E(X)]^{2}$
- That is,
- $\sigma^{2}=\mathrm{E}[\mathrm{X}-\mu]^{2}=$

$$
{ }_{0}(x-\mu)^{2} f(x) d x
$$

$$
=\quad \int_{x ;-\infty}^{\mu-\tau \sigma}(x-\mu)^{2} f(x) d x+\int_{x ; \mu-t \sigma}^{\mu+\tau \sigma}(x-\mu)^{2} f(x) d x+\int_{x ; \mu+\tau \sigma}^{\infty}(x-\mu)^{2} f(x) d x
$$

$$
\geq \quad \int_{x i-\infty}^{\mu-t \sigma}(x-\mu)^{2} f(x) d x+\int_{x ; \mu+t \sigma}^{\infty}(x-\mu)^{2} f(x) d x
$$

 non-negative)

TCHEBYCHEFF'S INEQUALITY

$\odot \sigma^{2} \geq \int_{x i-\infty}^{\mu-\tau \sigma}(x-\mu)^{2} f(x) d x+\int_{x ; \mu+\tau \sigma}^{\infty}(x-\mu)^{2} f(x) d x$

- In the first integral, $x \leq \mu-t \sigma$, that is, $\mu-x \geq t \sigma$, therefore, $(x-\mu)^{2} \geq t^{2} \sigma^{2}$.
- In the second integral, $x \geq \mu+t \sigma$, yielding $(x-\mu)^{2} \geq$ $\mathrm{t}^{2} \sigma^{2}$.
- That is, in both the integrals, the least value of (x$\mu)^{2}$ is $t^{2} \sigma^{2}$.
- Hence replacing $(x-\mu)^{2}$ by its least value $t^{2} \sigma^{2}$ does not alter the existing inequality.
\odot That is, $\sigma^{2} \geq \int_{x i-\infty}^{\mu-\tau \sigma} t^{2} \sigma^{2} f(x) d x+\int_{x ; \mu+t \sigma}^{\infty} t^{2} \sigma^{2} f(x) d x$

TCHEBYCHEFF'S INEQUALITY

- That is, $\sigma^{2} \geq \int_{x:-\infty}^{\mu-t \sigma} t^{2} \sigma^{2} f(x) d x+\int_{x ; \mu+t \sigma}^{\infty} t^{2} \sigma^{2} f(x) d x$

$$
\begin{aligned}
& =\mathrm{t}^{2} \sigma^{2}\left\{\int_{x:-\infty}^{\mu-\tau \sigma} f(x) d x+\int_{x: \psi+t \sigma}^{\infty} f(x) d x\right. \\
& =\mathrm{t}^{2} \sigma^{2}\{\mathrm{P}[-\infty<\mathrm{X} \leq \mu-\mathrm{t} \sigma]+\mathrm{P}[\mu+\mathrm{t} \sigma \leq \mathrm{X}<\infty]\}
\end{aligned}
$$

$$
=t^{2} \sigma^{2}\{P[-\infty<X-\mu \leq-t \sigma]+P[t \sigma \leq X-\mu<\infty]\}
$$

$$
=t^{2} \sigma^{2} P[|X-\mu| \geq t \sigma]
$$

- That is, $\sigma^{2} \geq t^{2} \sigma^{2} P[|X-\mu| \geq t \sigma]$,
- implies, $\mathrm{P}[|\mathrm{X}-\mu| \geq \mathrm{t} \sigma] \leq ; \frac{1}{t^{2}}$ he first form!

TCHEBYCHEFF'S INEQUALITY

- $P[|X-\mu| \geq t \sigma] \leq \frac{1}{t^{2}}$
- Multiplying both sides with -1 ;

$$
-P[|X-\mu| \geq t \sigma] \geq-\frac{1}{t^{2}}
$$

- Adding ' 1 ' to both sides; $1-\mathrm{P}[|\mathrm{X}-\mu| \geq \mathrm{t} \sigma] \geq 1-\frac{1}{t^{2}}$
- That is, $\mathrm{P}[|\mathrm{X}-\mu|<\mathrm{t} \sigma] \geq 1-\frac{1}{t^{2}}$
- Hence, the second form of theorem holds.
- Note: If the R.V. is discrete type, the theorem can be proved by applying summation instead of integration.

TCHEBYCHEFF'S INEQUALITY

Merits of the Inequality

- It gives an upper bound (lower bound) to the probability of a R.V. deviating from its mean more than (less than) 't' times the S.D. σ.
- It is valid for both discrete and continuous variables.
- It is applicable to all R.V.s for which mean and S.D. known, without knowing its probability distribution.
- It justifies the importance of S.D. as a measure of dispersion.
- If the moments only up to second order exist, this inequality provides the possible best result.

TCHEBYCHEFF'S INEQUALITY

Demerits of the Inequality

- It will give a useful result only if the probability distribution of the variable is unknown.
- If $t<1$, the upper bound (lower bound) obtained will be more than 1 (less than 0) and hence is of no use.
- The upper bound (lower bound) obtained in most cases is much larger (smaller) than the true probability.

BERNOULLI'S LAW OF LARGE NUMBERS

- Consider a random experiment with only two possible outcomes success and failure.
- Let ' p ' be the probability of success which remains unchanged from trial to trial.
- Consider n independent trials of the experiment.
- Let X be the number of success in these n trials. Then for any $\varepsilon>0$,
- $\mathrm{P}\left[\left|\frac{X}{n}-\mathrm{p}\right| \geq \varepsilon\right] \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

OR
○ $\mathrm{P}\left[\left|\frac{X}{n}-\mathrm{p}\right|<\varepsilon\right] \rightarrow 1$ as $\mathrm{n} \rightarrow$

BERNOULLI'S LAW OF LARGE NUMBERS

Proof: Here X ~ b (n, p)
$E(X)=n p$ and $V(X)=n p q ; q=1-p$
Consider $\frac{X}{n}$; Here $\mu=\mathrm{E}()=\frac{x}{n} \mathrm{p}$
$\sigma^{2}=\mathrm{V}\left(\frac{x}{n}\right)=\frac{n p q}{n^{2}}=\frac{p q}{n}$
By Tchebycheff's Inequality, $\mathrm{P}[|\mathrm{X}-\mu| \geq \mathrm{t} \sigma] \frac{1}{\frac{1}{t^{2}}}$
On substitution, $\mathrm{P}\left[\left|\frac{X}{n}-\mathrm{p}\right| \geq \mathrm{t} \sqrt{\frac{p q}{n}}\right] \leq \frac{1}{t^{2}}$
Let $\varepsilon=t \sqrt{\frac{p q}{n}}$, then $\frac{1}{t^{2}}=\frac{p q}{n \varepsilon^{2}}$;
Hence, $\mathrm{P}\left[\left|\frac{X}{n}-\mathrm{p}\right| \geq \varepsilon\right] \leq \frac{p q}{n \varepsilon^{2}}$

BERNOULLI'S LAW OF LARGE NUMBERS Hence, $\mathrm{P}\left[\left|\frac{X}{n}-\mathrm{p}\right| \geq \varepsilon\right] \leq \frac{p q}{n \varepsilon^{2}}$

- ' pq ' is maximum when $\mathrm{p}=\mathrm{q}$, with maximum value $1 / 4$. That is, $\mathrm{pq} \leq 1 / 4$. Hence on substituting the maximum value of ' $p q$ ' in the above inequality, the existing inequality does not alter.
- Therefore, $\mathrm{P}\left[\left|\frac{X}{n}-\mathrm{p}\right| \geq \varepsilon\right] \leq \frac{1}{4 n \varepsilon^{2}}$
- As n is very large $\frac{1}{\text { mase }^{2}}$ tends to 0 . Hence, the theorem
- The alternate form is in terms of the complement probability

BERNOULLI'S LAW OF LARGE NUMBERS

-The law states that, as the number of repetitions (n) increases indefinitely, the relative frequency of an event converges in probability to the probability (p) of the event.
-This phenomenon is called statistical regularity, which is the background of the frequency definition of probability.

WEAK LAW OF LARGE NUMBERS

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables having $\mu_{i}=E\left(X_{i}\right)$ for $i=1,2, \ldots, n$.
- Let $S_{n}=\sum_{m=1}^{n} x_{i} \quad M_{n}=E\left(S_{n}\right)$, and $B_{n}=\operatorname{Var}\left(S_{n}\right)$
- Then for any $\varepsilon>0$,
$\operatorname{P}\left[\left|\frac{s_{n}}{n}-\frac{m_{n}}{n}\right| \geq \varepsilon\right] \rightarrow$ as $n \rightarrow \infty$, provided $\frac{\boldsymbol{B}_{n}}{\boldsymbol{n}^{2}} \rightarrow \mathbf{0}$

WEAK LAW OF LARGE NUMBERS

Proof: Here $\mathrm{S}_{\mathrm{n}}=\sum_{i=1}^{n} x_{i}$ Consider $\frac{s_{n}}{n}$;

- Here $\mu=\frac{\mathrm{M}_{\mathrm{n}}}{n}$ and $\sigma^{2}=\frac{\boldsymbol{B}_{n}}{\boldsymbol{n}^{2}}$
- By Tchebycheff's Inequality, $\mathrm{P}[|\mathrm{X}-\mu| \geq \mathrm{t} \sigma] \leq \frac{1}{t^{2}}$
- On substitution, $\mathrm{P}\left[\left|\frac{s_{n}}{n}-\frac{M_{n}}{n}\right| \geq \mathrm{t} \sqrt{\frac{B_{n}}{n^{2}}}\right] \leq \frac{1}{t^{2}}$
- Let $\varepsilon=\mathrm{t} \sqrt{\frac{e_{n}}{n^{2}}}$, then $\frac{1}{t^{2}}=\frac{B_{n}}{n^{2} \varepsilon^{2}}$;
- As n is large, the theorem holds.
- When X_{i} follows Bernoulli distribution for $\mathrm{i}=1,2, \ldots, \mathrm{n}$, then WLLN reduces to Bernoulli's law.

Thank you

