LAWS OF LARGE NUMBERS

Dr. Lishamol Tomy Associate Professor Department of Statistics Deva Matha College Kuravilangad

LAWS OF LARGE NUMBERS

- In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times
- According to the law
 - the <u>average</u> of the results obtained from a large number of trials should be close to the <u>expected value</u> and tends to become closer to the expected value as more trials are performed
- The LLN is important because it guarantees that even random events with a large number of trials may return stable long-term results

LAWS OF LARGE NUMBERS

Three important LLNs are discussed:

- Tchebycheff's Inequality
- Bernoulli's Law of Large Numbers
- Weak Law of Large Numbers (WLLN)

(CHEBYCHEV'S INEQUALITY)

Let X be a R.V. with mean μ and S.D. σ , then for any positive number 't',

$$P[|X-\mu| \ge t\sigma] \le \frac{1}{t^2}$$

OR
$$P[|X-\mu| < t\sigma] \ge 1 - \frac{1}{t^2}$$

Proof: Let X be a continuous R.V.

- with p.d.f. f(x), mean μ and S.D. σ
- then, Var (X)= $E[X-E(X)]^2$
- That is,

•
$$\sigma^2 = E[X-\mu]^2 = \int_{x=\infty}^{\infty} (x-\mu)^2 f(x) dx$$

$$= \int_{x;-\infty}^{\mu-t\sigma} (x-\mu)^2 f(x) dx + \int_{x;\mu-t\sigma}^{\mu+t\sigma} (x-\mu)^2 f(x) dx + \int_{x;\mu+t\sigma}^{\infty} (x-\mu)^2 f(x) dx$$

$$\geq \int_{x:-\infty}^{\mu-t\sigma} (x-\mu)^2 f(x) dx + \int_{x:\mu+t\sigma}^{\infty} (x-\mu)^2 f(x) dx$$

(as $\int_{x:\mu-t\sigma}^{\mu+t\sigma} (x-\mu)^2 f(x) dx$ always, since the integrand is non-negative)

•
$$\sigma^2 \geq \int_{x;-\infty}^{\mu-t\sigma} (x-\mu)^2 f(x) dx + \int_{x;\mu+t\sigma}^{\infty} (x-\mu)^2 f(x) dx$$

- In the first integral, $x \le \mu$ -to, that is, μ -x \ge to, therefore, $(x-\mu)^2 \ge t^2 \sigma^2$.
- In the second integral, $x \ge \mu + t\sigma$, yielding $(x-\mu)^2 \ge t^2 \sigma^2$.
- That is, in both the integrals, the least value of $(x \mu)^2$ is $t^2\sigma^2$.
- Hence replacing $(x-\mu)^2$ by its least value $t^2\sigma^2$ does not alter the existing inequality.

• That is, $\sigma^2 \ge \int_{x;-\infty}^{\mu-t\sigma} t^2 \sigma^2 f(x) dx + \int_{x;\mu+t\sigma}^{\infty} t^2 \sigma^2 f(x) dx$

• That is, $\sigma^2 \ge \int_{x;-\infty}^{\mu-t\sigma} t^2 \sigma^2 f(x) dx + \int_{x;\mu+t\sigma}^{\infty} t^2 \sigma^2 f(x) dx$

•
$$= t^2 \sigma^2 \left\{ \int_{x;-\infty}^{\mu-t\sigma} f(x) dx + \int_{x;\mu+t\sigma}^{\infty} f(x) dx \right\}$$

• =
$$t^2 \sigma^2 \{ P[-\infty < X \le \mu - t\sigma] + P[\mu + t\sigma \le X < \infty] \}$$

• =
$$t^2\sigma^2 \{ P[-\infty < X - \mu \le t\sigma] + P[t\sigma \le X - \mu < \infty] \}$$

•
$$= t^2 \sigma^2 P[|X - \mu| \ge t\sigma]$$

- That is, $\sigma^2 \ge t^2 \sigma^2 P[|X \mu| \ge t\sigma]$, implies, $P[|X \mu| \ge t\sigma] \le \frac{1}{t^2}$ he first form!

- $P[|X-\mu| \ge t\sigma] \le \frac{1}{r^2}$
- Multiplying both sides with -1; $-P[|X-\mu| \ge t\sigma] \ge -\frac{1}{r^2}$
- Adding '1' to both sides; $1 P[|X \mu| \ge t\sigma] \ge 1 \frac{1}{t^2}$ That is, $P[|X \mu| < t\sigma] \ge 1 \frac{1}{t^2}$
- Hence, the second form of theorem holds.
- Note: If the R.V. is discrete type, the theorem can be proved by applying summation instead of integration.

<u>Merits of the Inequality</u>

- It gives an upper bound (lower bound) to the probability of a R.V. deviating from its mean more than (less than) 't' times the S.D. σ.
- It is valid for both discrete and continuous variables.
- It is applicable to all R.V.s for which mean and S.D. known, without knowing its probability distribution.
- It justifies the importance of S.D. as a measure of dispersion.
- If the moments only up to second order exist, this inequality provides the possible best result.

Demerits of the Inequality

- It will give a useful result only if the probability distribution of the variable is unknown.
- If t < 1, the upper bound (lower bound) obtained will be more than 1 (less than 0) and hence is of no use.
- The upper bound (lower bound) obtained in most cases is much larger (smaller) than the true probability.

BERNOULLI'S LAW OF LARGE NUMBERS

- Consider a random experiment with only two possible outcomes success and failure.
- Let 'p' be the probability of success which remains unchanged from trial to trial.
- Consider n independent trials of the experiment.
- Let X be the number of success in these n trials. Then for any ε > 0,
 P[|^X/_n p| ≥ ε]→0 as n → ∞ OR

• P[
$$|\frac{x}{n} - p| < \varepsilon$$
] $\rightarrow 1$ as n \rightarrow

BERNOULLI'S LAW OF LARGE NUMBERS

Proof: Here X ~ b (n, p)
E(X) = np and V(X) = npq; q= 1-p
Consider
$$\frac{X}{n}$$
; Here $\mu = E() = \frac{x}{n}p$
 $\sigma^2 = V(\frac{x}{n}) = \frac{npq}{n^2} = \frac{pq}{n}$
By Tchebycheff's Inequality, P[|X- μ | $\geq t\sigma$] $\leq \frac{1}{t^2}$
On substitution, P[$|\frac{X}{n} - p| \geq t\sqrt{\frac{pq}{n}}$] $\leq \frac{1}{t^2}$

Let
$$\varepsilon = 1\sqrt{\frac{pq}{n}}$$
, then $\frac{1}{t^2} = \frac{1}{n\varepsilon^2}$;
Hence, P[$|\frac{x}{n} - p| \ge \varepsilon$] $\le \frac{pq}{n\varepsilon^2}$

BERNOULLI'S LAW OF LARGE NUMBERS Hence, $P[|\frac{x}{n} - p| \ge \varepsilon] \le \frac{pq}{n\varepsilon^2}$

- 'pq' is maximum when p = q, with maximum value 1/4. That is, pq ≤1/4. Hence on substituting the maximum value of 'pq' in the above inequality, the existing inequality does not alter.
- Therefore, $P[|\frac{x}{n} p| \ge \varepsilon] \le \frac{1}{4n\varepsilon^2}$
- As n is very large $\frac{1}{4n\epsilon^2}$ tends to 0. Hence, the theorem
- The alternate form is in terms of the complement probability

BERNOULLI'S LAW OF LARGE NUMBERS

- •The law states that, as the number of repetitions (n) increases indefinitely, the relative frequency of an event *converges in probability* to the probability (p) of the event.
- •This phenomenon is called *statistical regularity*, which is the background of the *frequency definition of probability*.

WEAK LAW OF LARGE NUMBERS

- Let $X_1, X_2, ..., X_n$ be n random variables having $\mu_i = E(X_i)$ for i = 1, 2, ..., n.
- Let $S_n = \sum_{i=1}^n x_i$ $M_n = E(S_n)$, and $B_n = Var(S_n)$ • Then for any $\varepsilon > 0$,
- $P\left[\left| \frac{s_n}{n} \frac{M_n}{n} \right| \ge \varepsilon \right] \rightarrow as n \rightarrow \infty, provided$

$$\frac{B_n}{n^2} \rightarrow 0$$

WEAK LAW OF LARGE NUMBERS **Proof:** Here $S_n = \sum_{i=1}^n X_i$ Consider $\frac{S_n}{n}$;

• Here
$$\mu = \frac{M_n}{n}$$
 and $\sigma^2 = \frac{B_n}{n^2}$

- By Tchebycheff's Inequality, $P[|X-\mu| \ge t\sigma] \le \frac{1}{t^2}$ On substitution, $P[|\frac{S_n}{n} \frac{M_n}{n}| \ge t |\frac{B_n}{n^2}] \le \frac{1}{t^2}$

• Let
$$\varepsilon = t_{\sqrt{\frac{B_n}{n^2}}}$$
, then $\frac{1}{t^2} = \frac{B_n}{n^2 \varepsilon^2}$;

- As n is large, the theorem holds.
- When X_i follows Bernoulli distribution for i= 1, 2, ..., n, then WLLN reduces to Bernoulli's law.

Thank you